Sunday, April 10, 2011

Noise (Signal Interference) | Speed Bumps

Everything electrical in the cable that isn't the signal itself is noise and constitutes a threat to the integrity of the signal. Many sources of noise exist, from within and outside the cable. Controlling noise is of major importance to cable and connector designers because uncontrolled noise will overwhelm the data signal and bring a network to its knees.


Twisted-pair cables utilize balanced signal transmission. The signal traveling on one conductor of a pair should have essentially the same path as the signal traveling the opposite direction on the other conductor. (That's in contrast to coaxial cable, in which the center conductor provides an easy path for the signal but the braid and foil shield that make up the other conductor are less efficient and therefore a more difficult pathway for the signal.)
As signals travel along a pair, an electrical field is created. When the two conductors are perfectly symmetrical, everything flows smoothly. However, minute changes in the diameter of the copper, the thickness of the insulating layer, or the centering of conductors within that insulation cause disturbances in the electrical field called unbalances. Electrical unbalance means noise.

Resistance unbalance occurs when the dimensions of the two conductors of the pair are not identical. Mismatched conductors, poorly manufactured conductors, or one conductor that got stretched during installation will result in resistance unbalance.

Capacitance unbalance is also related to dimensions, but to the insulation surrounding the conductor. If the insulation is thicker on one conductor than on the other, then capacitance unbalance occurs. Or, if the manufacturing process is not well controlled and the conductor is not perfectly centered (like a bull's-eye) in the insulation, then capacitance unbalance will exist.

Both these noise sources are usually kept well under control by the manufacturer and are relatively minor compared to crosstalk.

You've likely experienced crosstalk on a telephone. When you hear another's conversation through the telephone, that is crosstalk. Crosstalk occurs when some of the signal being transmitted on one pair leaks over to another pair.

When a pair is in use, an electrical field is created. This electrical field induces voltage in adjacent pairs, with an accompanying transfer of signal. The more parallel the conductors, the worse this phenomenon is, and the higher the frequency, the more likely crosstalk will happen. Twisting the two conductors of a pair around each other couples the energy out of phase (that's electrical-engineer talk) and cancels the electrical field. The result is reduced transfer of signal. But the twists must be symmetrical; i.e., both conductors must twist around each other, not one wrapping around another that's straight, and two adjacent pairs shouldn't have the same interval of twists. Why? Because those twist points become convenient signal-transfer points, sort of like stepping-stones in a stream. In general, the shorter the twist intervals, the better the cancellation and the less crosstalk. That's why Category 5e and higher cables are characterized by their very short twist intervals.

Crosstalk is measured in decibels; the higher the crosstalk value, the less crosstalk noise in the cabling. See Figure 1


Figure 1: Crosstalk

3 comments: